CORE Security Technologies

Killing the myth of Cisco IOS rootkits:
DIK (Da Ios rootKit)

Sebastian 'topo' Muniz
March 2008

Abstract

Rootkits are very common in most popular Operating Systems like
Windows, Linux, Unix and any variant of those but they are rarely
seen in embedded OS's.

This is due to the fact that most of the time embedded 0S's are
closed source, hence internals of the 0S are unknown and reverse
engineering process is harder than usual.

In real life, it's very common that once an attacker takes control of
a system he or she needs to maintain access to it so a rootkit is
installed.

The rootkit seizes control of the entire system running on that
hardware by hiding files, processes, network connections, allowing
unauthorized users to act as system administrators, etc..

This paper demonstrates that a rootkit with those characteristics can
be easily created and deployed for a closed source 0OS like IOS and
run unnoticed by system administrators by surviving to most, if not
all, of the security measures given by experts on the field.

As a proof of this, different ways to infect a target IOS will be
shown like run-time patching and image binary patching.

To discuss the binary patching technique from a practical point of
view, DIK (Da Ios rootKit) which is a set of python[l] scripts that
provides a generic rootkit implementation for IOS will be introduced.



Introduction

The case of Cisco IOS (Internetwork Operating System) is special
because it is probably the most widely deployed routing Operating
System running on Internet and is part of mission critical networking
operation on most, virtually any, organization.

Network devices are critical for every organization and sensitive
data goes through them every second making them strategic locations
for an attackers to place a rootkit to gather all kinds of
information about the target.

System administrators should be prepared for this kind of threats
because a serious information leak can happen before they realize
that something is going on.

Security measures are usually taken to detect abnormal operations on
Cisco devices but sometimes those measures may not be enough to
detect advanced rootkits and may only unveil high-level rootkits
(comparable to user-mode rootkits on Windows) like a TCL script (only
recent versions of IOS support TCL as a scripting language) or device
reconfiguration via startup-config file to alter routes, packet
handling, etc.

Only a small percentage of the system administrators perform periodic
security audits on the organization network infrastructure to detect
a system compromise. These audits may be (but are not limited to):
verifying router logs, checking external logs that were set by the
router when a user logged in or changed the device configuration, or
even downloading the IOS image to compare it's checksum with a
previously calculated value from the original IOS image file. For any
of these actions to take place, the system administrator implicitly
relies on the IOS internal functions and if the device is
compromised, the logging and sys log functions can be altered to
cover the attacker's actions making the audit completely useless.



Knowing the enemy

Along the years Cisco created multiple hardwares (even using
different CPU's architectures) with different software features sets
(i.e., VoIP) to address the needs of their customers. This required
multiple and unique IOS versions available because each one of them
needed a separate build process for the specific feature set to run
on the target hardware.

Another important thing is that IOS is not prepared to support
additional modules or plug-ins to be loaded.

With all this in mind we jump into the conclusion that a generic
solution for a rootkit might be too difficult if not impossible to
implement.

It will be demonstrated that this can be easily solved with a generic
method which will address the needs to maintain code for multiple
architectures or programming the rootkit core in different assembly
languages.

IOS Internals

Cisco IOS has a monolithic architecture which runs as a single image
and all processes have access to each others memory.

No memory protection between processes is implemented which means
that a bug in a process can (and will probably do) corrupt other
processes and compromise system operations leading to a general
failure.

Another characteristic of the Cisco IOS is that the scheduler is not
preemptive like it's counterparts on modern OS's. It has a 'run to
completion' scheduler which means that when a process is scheduled,
it runs until it decides to resign to this privilege and make a
system call to allow other processes to run.

Cisco IOS images are usually made of a 32-bits ELF file running on a
hardware with a RISC processor (usually MIPS or PowerPC).

It's important to note that some twisted Cisco engineers modified
some of the values from a standard ELF header so any tool trying to
obtain information from the file will find lots of invalid values
thus making initial diagnostic a little bit annoying.

IOS initial setup on memory

This image contains a SFX (self decompressing) header that unpacks



the fully functional IOS code which will be relocated in memory
during run-time.

Decompression and relocation involves several steps which must be
understood because the compressed IOS image will be manipulated to
unpack it, insert the backdoor into it and repack the image with the
corrected checksums to bypass initializing tests that would forbid
the modified image to run on the device.

An IOS compressed image has the following structure:

ELF header

SFX code

Magic (OxXFEEDFACE)

Compressed image length

Compressed image checksum

Uncompressed image checksum

Uncompressed image length

Compressed
image

Once the device powers on, it will start the ROM Monitor who will
perform several steps to load the IOS image.
Those steps are:

e The ROM Monitor will load and position the self compressing
image at its link address in memory (either from a flash boot or
a netboot) as the ELF header specifies.

e The main routine in the compressed image then checks to ensure
that enough memory is available for the decompression.

e The compressed image is checksummed and the result is compared
against the value stored in the file to ensure that no
corruption has occurred. Then it is moved to a higher memory
location and the BSS section is initialized with zeros.

e Decompression process takes place. Once it finishes, the size of
the decompressed image is compared against the value stored in
the header to ensure that was completely successful. The
decompressed image is also checksummed to ensure there was no
corruption.



e A function call performs the image relocation in memory and
after that the decompressed image entry point is called.

The beginning of the end

The rootkit will commonly hook/patch certain key (and usually low
level) functions of the 0OS being compromised. These functions are
strategic locations to intercept data of interest to the attacker.
They could be grouped by their functionality:

System Login

Authentication and authorization
File system access

Networking operations

Process handling

Information displaying

System Logs

In the case of a closed source 0S like IOS the first we need to do is
to identify the code that carry out those above mentioned functions.
For that we will download the image running on the device that we
want to infect. This can be done by configuring a server on an
attacker controlled machine and issuing a copy command on the Cisco
device command line.

With the target IOS image downloaded we can now proceed to the
analysis phase.

Chasing the prey

Once we have the file, we must follow a few step to be able to detect
the above mentioned functions:

1. Proceed to unpack the image using a script[2] called
'ciscoutils' which is part of DIK. Once the image is unpacked,
we will checksum it to ensure there was no corruption.

The decompression process is the same as for any zipped file so
we can use any free unzip utility to do it and then perform the
checksum without the decompression using the same script.

2. The decompressed image must be analyzed using IDA Pro[3] to
obtain crucial information for the rootkit survival.
This can take several minutes, even hours because uncompressed
IOS image files take up several megabytes (specially the ones
with advanced features sets).



3. We will note that once IDA finishes the analysis, it won't be
successful because several functions and multiple string
references will be missing.

To address this problem we will use another script included with
DIK called 'enhanced analysis'[4] which uses IDAPython[5].

The script will create separate segments for CODE and DATA and
it will recognize every function and every string reference in
the image.

Once the script finishes the image is ready to use and can be
examined by the attacker to gain knowledge of the internals of the
Cisco IOS.

Successful analysis of the image file is very important because it
contains plenty of debugging strings to provide verbose information
to the system administrator about the 0OS state and those debug
strings will be used as starting point to detect the key functions of
the 0S and because we know for sure that the strings remain the same
across multiple IOS versions.

Resistance is futile

Some of those interesting functions might not be located because of
compiling issues it might not be possible to retrieve any string
references or simply because they do not use any strings at all.

As we said before, the IOS contains plenty of strings, most of them
with debugging information and others just output the commonly seen
messages to the user terminal. These message can be located in
functions close to the ones we are looking for and knowing that they
will not be moved by the compiler, we can try to find these
'neighbour' functions and then identify the ones we are interested in
hooking with the rootkit.

The location of neighbour functions is not necessarily immediate to
the one we are looking for, there can be another function without any
string references separating them but still this approach will
succeed.

Home sweet home

The rootkit location must be decided before any image patching takes
place (whether it is on the file or at run-time) because the patches
will jump to the rootkit code and they must know it's memory
location.



Taking advantage of IOS memory management protection (or the lack of
it) we will write the rootkit code on the DATA segment by sacrificing
a debug string which will probably never be used.

Just in case that the system administrator decides to use some IOS
feature that requires that string, we will put a NULL at the first
character.

There are several ways to insert the rootkit code in the file and
they are all well known for any Linux virus writer because it's
mainly an standard ELF infection procedure[6][7].

No detailed explanation will be given about those techniques, only
for the sake of clarity it will mentioned that overwriting an
existing string resource in the file is the method we chose.

This method is the easiest in this case because IOS images contain
very long strings that are rarely used and there is no need to modify
the ELF header values because every section and segment remains the
same.

In some cases the DATA segment permissions need to be changed to
Read-Write-Execute.

In case the attacker wishes to create an additional section in the
image file, it can be easily done with the PyElf[8] library
specially created for this project.

Image manipulation must be done very carefully because it will be
relocated after the decompression process and any invalid memory
reference could lead to an exception resulting in a system crash.

We must store the memory address that points to the end of the
rootkit code for further operations on the image.

Code voyeurism and fetishism

Once the key functions were found, we will discuss the rootkit
insertion by binary patching the image. Once in control of the
function it will take different actions based on the parameters
passed at run-time.

Let's take for example the password checking function.

In this case the rootkit must take control at the beginning of the
function to check if the rootkit password was entered. That means
that some instructions (architecture dependent) will be overwritten
at the prologue of the function and stored for further usage.

Due to the nature of the RISC architecture (despite of differences
between MIPS and PowerPC) we must store the return address and then



set a chunk of assembly code called 'trampoline' that will redirect
the execution flow to a 'stub'.

The so called trampoline is responsible for saving the return address
and jumping immediately (and unconditionally) to an attacker specific
code which will ultimately call the function of the rootkit to
validate the password and redirect execution flow again based on the
result.

The location that the trampoline jumps to is called 'stub' and it is
responsible of saving the return address of the caller (in this case
the trampoline's address), calling the the rootkit function with the
same arguments of the IOS legitimate function and process the result
of the function call.

This result is needed to decide if it will return to the trampoline
and continue the original execution flow by previously executing the
instructions overwriting by the trampoline (in case that the password
entered is not the rootkit password) or return directly to the
trampoline's caller because no more password validation is needed (in
case the password entered is the rootkit master password) which means
that the attacker is logging in.

Some of those painful steps might not be necessary if the rootkit
code was implemented in pure assembly but in the case of DIK it was
implemented in plain C.

Those few lines of special assembly instructions called 'trampoline'
and 'stub' were needed to fill the gap between a C function compiled
(with position independent code) for the target architecture and
extracted to be inserted 'as is' directly inside the IOS image.

The advantage of this method is that only one C code is maintained
(with certain limitations, of course) instead of two codes that
perform the same actions on different architectures (a MIPS code and
a PowerPC code).

Functioning without the others functions

A function that performs password checking is useful to retrieve
other user's password in plain text and if this information could be
written somewhere (may be a hidden file on flash) then it would be of
great interest for an attacker.

There are several functions besides the one mentioned above that a
rootkit must hook/patch to take complete control of the system.
Those functions include equivalents of file handling functions like
read/write, socket handling like send/recv and IOS functions that
implement the CLI (Command Line Interface) commands entered that can
alert the system administrator of unauthorized access.



No discussion will be made about all those functions but it must be
said that some of them are already hooked by DIK. Operations like
downloading the IOS image in a periodic manner by the system
administrator to perform a checksum (like MD5, SHAl, etc.) as part of
the security measures to detect modified images could be easily
redirected to an external server that contains an unaltered image
without any suspicion. It could even intercept the read() function
calls asking for a chunk of the compressed image on flash (or any
other media) and in that moment it decompress the infected chunk,
patch it with the original bytes and re-compress it so it's returned
intact (this is possible since the compression algorithm can work
with chunks of bytes instead of the entire file).

At this moment the difference between a low level rootkit and a
simple TCL script can be appreciated because such actions like the
one mentioned before could never be taken by a higher level rootkit.
Another advantage of the method is that no process is running to
perform those actions.

Ready, steady, go

With the rootkit code in place, we are now ready to dump the newly
patched IOS image, repack it with the original (self decompressing)
file header and upload it to the target system.

All the patching techniques and the IOS dump is done by the main
IDAPython script called 'image patcher'.

The patched IOS image must be checksummed again because now that it's
contents have changed then the o0ld checksum values won't match.

The script 'ciscoutils' previously mentioned can be used to
recalculate all the checksums and recreate the IOS self decompressing
image ready to be used by the hardware.

Other ways of The Force

Image binary patching has been discussed in depth but run-time memory
patching technique is also possible using the GDB[10] stub inside
every IOS image.

The GDB stub is the debugging interface for Cisco developers which
allows them to debug IOS processes. It also allows remote image
diagnostic because it's capable of working over a Telnet session as
well as over a Serial session establish on the console port.

This GDB stub is capable of working in three different ways:



e Process examination: Allows memory inspection and processor
registers inspection but it cannot modify system values (memory
of registers values).

The system execution continues normally during debugging so
'examine' mode can be executed over a Telnet session.

e Process debugging: In the situations that a console port of the
device is not accessible, process debug mode can be executed. It
works by catching unhandled exceptions on the specified process,
setting it in a special state where it will not be rescheduled
and then running the process of the debugger to debug the failed
process.

The IOS system continues to run during process debugging so it
is possible to debug a process over a Telnet session but certain
restrictions apply. The scheduler, an interrupt service routine
or any process needed for the debugging path (such as TCP/IP)
cannot be debugged over this session.

This debugging mode is capable of memory and processor registers
modification so this is the best option for an attacker to
remotely modify the device memory to insert the backdoor.

e Kernel debugging: If the attacker gains physical access to a
console port he or she can execute the kernel debugger which is
the preferred way to debug a router. In this mode, the entire
device execution is stopped during the exception, freezing all
system states.

Using the Telnet connection, a remote GDB instance can be executed to
perform memory patching but certain precautions must be taken, like
not writing the trampoline code before the rootkit code because if a
patched function is invoked before the rootkit code is in place a
memory access violation will be raised leading to a system crash.

An attacker might want to automate this run-time patching procedure
for every system restart and it can be accomplished in a few
different ways.

One possible way is to create a TCL script to execute at startup,
engage a Telnet session with the local host and executing the process
debugger to patch the device it is running on. In this case the
script must contain the rootkit code inside with the memory locations
to be modified which could have been previously obtained by the same
analysis phase that the image binary patching procedure.



Conclusions

A reliable and generic method for Cisco IOS image infection can be
implemented either via binary image modification or via run-time code
patching.

To face this kind of threat the only possibility available today is
CIR[11l] created by Felix 'FX' Lindner from Recurity Labs and
presented early this year when he talked about developments on IOS
forensics[12].

It's also important make a special mention on this because this is
the ONLY serious (and possible) way to perform forensics on a Cisco
device and still it might not be enough if the rootkit controls the
core-dump generation routines.

Unless every system administrator plans on using advanced forensics
methods on every device on their networks, they should take serious
security measures and try to keep the devices updated to minimize the
risk.

Even this may not be enough to detect an advanced rootkit already
deployed in the system.



References

[1] A free python interpreter for Windows called ActivePython can be
obtained at:
http://www.activestate.com/Products/activepython/features.plex

[2] The script called 'ciscoutils.py' can be used to decompress,
checksum and recreate a compressed file. Usage information could be
obtained by executing the script without parameters of with —-help.

[3] IDA Pro is disassembler and debugger that can be obtained at
http://www.hex-rays.com/idapro/

[4] The script called 'enhanced analysis.py' can be used to
completely analyze the file thus allowing other scripts to
successfully patch the IOS image to insert the backdoor.

[5] IDAPython is a plug-in for IDA Pro to allow python scripts to be
executed in the context of IDA and to access all of its functions. It
can be downloaded from http://d-dome.net/idapython

[6] 'The ELF virus writing HOWTO' at
http://www.linuxsecurity.com/resource files/documentation/virus-
writing-HOWTO/ html/index.html

[7] Daniel Hodson presentation at RUXCON 2004 is available at
http://www.ruxcon.org.au/files/2004/11-daniel hodson.ppt

[8] PyElf is a simple library for easy ELF file manipulation. Refer
to file pyelf.py for usage help.

[9] The script called 'image patcher.py' is responsible of functions
locating through strings, binary patching and image dumping to disk.

[10] GDB is The GNU Debugger Project and information about it can be
obtained from http://sourceware.orqg/gdb/

[l11] CIR (Cisco Information Retrieval) is accessible at
http://cir.recurity-labs.com/

[12] 'Developments in IOS Forensics' paper can be obtained at
http://www.recurity-
labs.com/content/pub/RecuritvLabs_Developments_in_IOS_Forensics.pdf



http://www.activestate.com/Products/activepython/features.plex
http://www.recurity-labs.com/content/pub/RecurityLabs_Developments_in_IOS_Forensics.pdf
http://www.recurity-labs.com/content/pub/RecurityLabs_Developments_in_IOS_Forensics.pdf
http://cir.recurity-labs.com/
http://sourceware.org/gdb/
http://www.ruxcon.org.au/files/2004/11-daniel_hodson.ppt
http://www.linuxsecurity.com/resource_files/documentation/virus-writing-HOWTO/_html/index.html
http://www.linuxsecurity.com/resource_files/documentation/virus-writing-HOWTO/_html/index.html
http://d-dome.net/idapython
http://www.hex-rays.com/idapro/

